Otimização da imagem

Autor: 
Jeff Tyson

A tecnologia de otimização da imagem é a mais comum. Os sistemas de otimização da imagem são chamados,normalmente, de dispositivos de visão noturna (NVD, em inglês). Os NVDs baseiam-se em um tubo especial chamado de tubo intensificador de imagem para coletar e amplificar a luz infravermelha e visível.


O tubo intensificador de imagem substitui fótons por elétrons e vice-versa

Aqui está como funciona a otimização de imagens:

  1. Uma lente convencional, chamada de lente objetiva, captura a luz ambiente e um pouco de luz infravermelha.
  2. A luz recolhida é enviada para o tubo intensificador de imagem. Na maioria dos NVDs, a alimentação de energia do tubo intensificador de imagem é feita através de duas baterias N-Cell ou "AA". O tubo gera uma alta-voltagem de cerca de 5 mil volts para os componentes do tubo de imagem.
  3. O tubo intensificador de imagem possui um fotocátodo que é usado para converter os fótons da energia luminosa em elétrons.
  4. À medida que os elétrons passam pelo tubo, elétrons similares são liberados dos átomos no tubo, multiplicando o número original de elétrons por milhares de vezes através do uso de uma placa de microcanais (MCP, em inglês) no tubo. Uma MCP é um minúsculo disco de vidro que possui milhões de furos microscópicos (microcanais), feitos usando tecnologia de fibra óptica. A MCP  localiza-se em um vácuo e possui eletrodos metálicos de cada lado do disco. Cada canal é cerca de 45 vezes mais longo do que sua largura e funciona como um multiplicador de elétrons.

    Quando os elétrons do fotocátodo atingem o primeiro eletrodo da MCP, são acelerados nos microcanais do vidro por pulsos de 5 mil V enviados entre o par de eletrodos. À medida que os elétrons passam pelos microcanais, fazem com que milhares de outros elétrons sejam liberados em cada canal usando um processo chamado emissão secundária em cascata. Basicamente, os elétrons originais colidem com a lateral do canal, excitando os átomos e provocando a liberação de outros elétrons. Esses novos elétrons também colidem com outros átomos, criando uma reação em cadeia que resulta em milhares de elétrons saindo do canal onde somente alguns poucos entraram. Um fato interessante é que os microcanais na MCP são criados em um pequeno ângulo (cerca de 5 a 8 graus de inclinação) para impulsionar as colisões dos elétrons e reduzir a retroalimentação de íons e luz direta do fósforo no lado da saída.


    Foto cedida pela B.E. Meyers Company
    As imagens de visão noturna são conhecidas por seu verde lúgubre
  5. Na extremidade do tubo intensificador de imagem, os elétrons atingem uma tela revestida de fósforo. Esses elétrons mantêm suas posições em relação ao canal que atravessaram, o que fornece uma imagem perfeita desde que eles permaneçam no mesmo alinhamento dos fótons originais. A energia dos elétrons faz com que o fósforo atinja um estado excitado e libere fótons. O fósforo cria a imagem verde na tela, que caracteriza a visão noturna.
  6. A imagem de fósforo verde é visualizada através de outra lente, chamada lente ocular, permitindo ampliar e focalizar a imagem. O NVD pode ser conectado a um mostrador eletrônico, como um monitor, ou a imagem pode ser vista diretamente através da lente ocular.